3. |
Aplicaciones de uso |
Cada año, en los diferentes congresos, simposios y talleres que se realizan en el mundo se reúnen investigadores con aplicaciones muy diversas. Sobre todo en los Estados Unidos, el data mining se ha ido incorporando a la vida de empresas, gobiernos, universidades, hospitales y diversas organizaciones que están interesadas en explorar sus bases de datos.Podemos decir que «en data mining cada caso es un caso». Sin embargo, en términos generales, el proceso se compone de cuatro etapas principales:
|

 |
1. Determinación de los objetivos. Trata de la delimitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining. |
|

|

 |
2. Preprocesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining. |
|

|

 |
3. Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial. |
|

|

 |
4. Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones. |
|
A continuación se describen varios ejemplos donde se ha visto involucrado el data mining. Se han seleccionado de diversos dominios y con diversos objetivos para observar su potencial. Respecto a los modelos inteligentes, se ha comprobado que en ellos se utilizan principalmente árboles y reglas de decisión, reglas de asociación, redes neuronales, redes bayesianas, conjuntos aproximados (rough sets), algoritmos de agrupación (clustering), máquinas de soporte vectorial, algoritmos genéticos y lógica difusa. |
 |
 |
3.1. |
En el gobierno |
El FBI analizará las bases de datos comerciales para detectar terroristas.A principios del mes de julio de 2002, el director del Federal Bureau of Investigation (FBI), John Aschcroft, anunció que el Departamento de Justicia comenzará a introducirse en la vasta cantidad de datos comerciales referentes a los hábitos y preferencias de compra de los consumidores, con el fin de descubrir potenciales terroristas antes de que ejecuten una acción.[4] Algunos expertos aseguran que, con esta información, el FBI unirá todas las bases de datos probablemente mediante el número de la Seguridad Social y permitirá saber si una persona fuma, qué talla y tipo de ropa usa, su registro de arrestos, su salario, las revistas a las que está suscrito, su altura y peso, sus contribuciones a la Iglesia, grupos políticos u organizaciones no gubernamentales, sus enfermedades crónicas (como diabetes o asma), los libros que lee, los productos de supermercado que compra, si tomó clases de vuelo o si tiene cuentas de banco abiertas, entre otros.[5] La inversión inicial ronda los setenta millones de dólares estadounidenses para consolidar los almacenes de datos, desarrollar redes de seguridad para compartir información e implementar nuevo software analítico y de visualización. |
|
 |
3.2. |
En la empresa |
Detección de fraudes en las tarjetas de crédito.En 2001, las instituciones financieras a escala mundial perdieron más de 2.000 millones de dólares estadounidenses en fraudes con tarjetas de crédito y débito. El Falcon Fraud Manager[6] es un sistema inteligente que examina transacciones, propietarios de tarjetas y datos financieros para detectar y mitigar fraudes. En un principio estaba pensado, en instituciones financieras de Norteamérica, para detectar fraudes en tarjetas de crédito. Sin embargo, actualmente se le han incorporado funcionalidades de análisis en las tarjetas comerciales, de combustibles y de débito.[7] El sistema Falcon ha permitido ahorrar más de seiscientos millones de dólares estadounidenses cada año y protege aproximadamente más de cuatrocientos cincuenta millones de pagos con tarjeta en todo el mundo –aproximadamente el sesenta y cinco por ciento de todas las transacciones con tarjeta de crédito.Descubriendo el porqué de la deserción de clientes de una compañía operadora de telefonía móvil.
Este estudio fue desarrollado en una operadora española que básicamente situó sus objetivos en dos puntos: el análisis del perfil de los clientes que se dan de baja y la predicción del comportamiento de sus nuevos clientes. Se analizaron los diferentes históricos de clientes que habían abandonado la operadora (12,6%) y de clientes que continuaban con su servicio (87,4%). También se analizaron las variables personales de cada cliente (estado civil, edad, sexo, nacionalidad, etc.). De igual forma se estudiaron, para cada cliente, la morosidad, la frecuencia y el horario de uso del servicio, los descuentos y el porcentaje de llamadas locales, interprovinciales, internacionales y gratuitas. Al contrario de lo que se podría pensar, los clientes que abandonaban la operadora generaban ganancias para la empresa; sin embargo, una de las conclusiones más importantes radicó en el hecho de que los clientes que se daban de baja recibían pocas promociones y registraban un mayor número de incidencias respecto a la media. De esta forma se recomendó a la operadora hacer un estudio sobre sus ofertas y analizar profundamente las incidencias recibidas por esos clientes. Al descubrir el perfil que presentaban, la operadora tuvo que diseñar un trato más personalizado para sus clientes actuales con esas características. Para poder predecir el comportamiento de sus nuevos clientes se diseñó un sistema de predicción basado en la cantidad de datos que se podía obtener de los nuevos clientes comparados con el comportamiento de clientes anteriores.
Prediciendo el tamaño de las audiencias televisivas.
La British Broadcasting Corporation (BBC) del Reino Unido emplea un sistema para predecir el tamaño de las audiencias televisivas para un programa propuesto, así como el tiempo óptimo de exhibición (Brachman y otros, 1996). El sistema utiliza redes neuronales y árboles de decisión aplicados a datos históricos de la cadena para determinar los criterios que participan según el programa que hay que presentar.[8] La versión final se desempeña tan bien como un experto humano con la ventaja de que se adapta más fácilmente a los cambios porque es constantemente reentrenada con datos actuales. |
|
 |
3.3. |
En la universidad |
Conociendo si los recién titulados de una universidad llevan a cabo actividades profesionales relacionadas con sus estudios.Se hizo un estudio sobre los recién titulados de la carrera de Ingeniería en Sistemas Computacionales del Instituto Tecnológico de Chihuahua II,[9] en Méjico (Rodas, 2001). Se quería observar si sus recién titulados se insertaban en actividades profesionales relacionadas con sus estudios y, en caso negativo, se buscaba saber el perfil que caracterizó a los exalumnos durante su estancia en la universidad. El objetivo era saber si con los planes de estudio de la universidad y el aprovechamiento del alumno se hacía una buena inserción laboral o si existían otras variables que participaban en el proceso. Dentro de la información considerada estaba el sexo, la edad, la escuela de procedencia, el desempeño académico, la zona económica donde tenía su vivienda y la actividad profesional, entre otras variables. Mediante la aplicación de conjuntos aproximados se descubrió que existían cuatro variables que determinaban la adecuada inserción laboral, que son citadas de acuerdo con su importancia: zona económica donde habitaba el estudiante, colegio de donde provenía, nota al ingresar y promedio final al salir de la carrera. A partir de estos resultados, la universidad tendrá que hacer un estudio socioeconómico sobre grupos de alumnos que pertenecían a las clases económicas bajas para dar posibles soluciones, debido a que tres de las cuatro variables no dependían de la universidad. |
|
 |
3.4. |
En investigaciones espaciales |
Proyecto SKYCAT.Durante seis años, el Second Palomar Observatory Sky Survey (POSS-II) coleccionó tres terabytes de imágenes que contenían aproximadamente dos millones de objetos en el cielo. Tres mil fotografías fueron digitalizadas a una resolución de 16 bits por píxel con 23.040 x 23.040 píxeles por imagen. El objetivo era formar un catálogo de todos esos objetos. El sistema Sky Image Cataloguing and Analysis Tool (SKYCAT) se basa en técnicas de agrupación (clustering) y árboles de decisión para poder clasificar los objetos en estrellas, planetas, sistemas, galaxias, etc. con una alta confiabilidad (Fayyad y otros, 1996). Los resultados han ayudado a los astrónomos a descubrir dieciséis nuevos quásars con corrimiento hacia el rojo que los incluye entre los objetos más lejanos del universo y, por consiguiente, más antiguos. Estos quásars son difíciles de encontrar y permiten saber más acerca de los orígenes del universo. |
|
 |
3.5. |
En los clubes deportivos |
El AC de Milán utiliza un sistema inteligente para prevenir lesiones.Esta temporada el club comenzará a usar redes neuronales para prevenir lesiones y optimizar el acondicionamiento de cada atleta. Esto ayudará a seleccionar el fichaje de un posible jugador o a alertar al médico del equipo de una posible lesión.[10] El sistema, creado por Computer Associates International, es alimentado por datos de cada jugador, relacionados con su rendimiento, alimentación y respuesta a estímulos externos, que se obtienen y analizan cada quince días. El jugador lleva a cabo determinadas actividades que son monitoreadas por veinticuatro sensores conectados al cuerpo y que transmiten señales de radio que posteriormente son almacenadas en una base de datos. Actualmente el sistema dispone de 5.000 casos registrados que permiten predecir alguna posible lesión. Con ello, el club intenta ahorrar dinero evitando comprar jugadores que presenten una alta probabilidad de lesión, lo que haría incluso renegociar su contrato. Por otra parte, el sistema pretende encontrar las diferencias entre las lesiones de atletas de ambos sexos, así como saber si una determinada lesión se relaciona con el estilo de juego de un país concreto donde se practica el fútbol.Los equipos de la NBA utilizan aplicaciones inteligentes para apoyar a su cuerpo de entrenadores.
El Advanced Scout[11] es un software que emplea técnicas de data mining y que han desarrollado investigadores de IBM para detectar patrones estadísticos y eventos raros. Tiene una interfaz gráfica muy amigable orientada a un objetivo muy específico: analizar el juego de los equipos de la National Basketball Association (NBA).
El software utiliza todos los registros guardados de cada evento en cada juego: pases, encestes, rebotes y doble marcaje (double team) a un jugador por el equipo contrario, entre otros. El objetivo es ayudar a los entrenadores a aislar eventos que no detectan cuando observan el juego en vivo o en película.
Un resultado interesante fue uno hasta entonces no observado por los entrenadores de los Knicks de Nueva York. El doble marcaje a un jugador puede generalmente dar la oportunidad a otro jugador de encestar más fácilmente. Sin embargo, cuando los Bulls de Chicago jugaban contra los Knicks, se encontró que el porcentaje de encestes después de que al centro de los Knicks, Patrick Ewing, le hicieran doble marcaje era extremadamente bajo, indicando que los Knicks no reaccionaban correctamente a los dobles marcajes. Para saber el porqué, el cuerpo de entrenadores estudió cuidadosamente todas las películas de juegos contra Chicago. Observaron que los jugadores de Chicago rompían su doble marcaje muy rápido de tal forma que podían tapar al encestador libre de los Knicks antes de prepararse para efectuar su tiro. Con este conocimiento, los entrenadores crearon estrategias alternativas para tratar con el doble marcaje.
La temporada pasada, IBM ofreció el Advanced Scout a la NBA, que se convirtió así en un patrocinador corporativo. La NBA dio a sus veintinueve equipos la oportunidad de aplicarlo. Dieciocho equipos lo están haciendo hasta el momento obteniendo descubrimientos interesantes. |
|